soluzione
Calcolare
x2 - 4
2x |
·
|
(
|
2x2
x2 - 4x + 4 |
-
|
2ax + 4a
ax2 - 4ax + 4a |
-
|
x + 2
x - 2 | )
|
=
|
=
|
x2 - 4
2x |
·
|
[
|
2x2
(x - 2)2 |
-
|
2a(x + 2)
a(x - 2)2 |
-
|
x + 2
x - 2 | ]
|
=
|
=
|
x2 - 4
2x |
·
|
[
|
2x2
(x - 2)2 |
-
|
2 (x + 2)
(x - 2)2 |
-
|
x + 2
x - 2 | ]
|
=
|
=
|
x2 - 4
2x |
·
|
|
2x2 - 2(x + 2) - (x - 2)(x + 2)
(x - 2)2 |
=
|
=
|
x2 - 4
2x |
·
|
|
2x2 - 2x - 4 - x2 + 4
(x - 2)2 |
=
|
=
|
x2 - 4
2x |
·
|
|
x2 - 2x
(x - 2)2 |
=
|
=
|
(x - 2)(x + 2)
2x |
·
|
|
x(x - 2)
(x - 2)2 |
=
|
=
|
x + 2
2 |
|