soluzione


Calcolare

5 - 2x

(x2 - 5x + 6)2
  -   1

x - 2
· (1 + 1

x - 2
)   +   1

x - 3
· ( 1 + 1

x - 3
)   =  


  =   5 - 2x

(x2 - 5x + 6)2
  -   1

x - 2
· x - 2 + 1

x - 2
  +   1

x - 3
· x - 3 + 1

x - 3
  =  


  =   5 - 2x

(x2 - 5x + 6)2
  -   1

x - 2
· x - 1

x - 2
  +   1

x - 3
· x - 2

x - 3
  =  


  =   5 - 2x

(x2 - 5x + 6)2
  -   x - 1

(x - 2)2
  +   x - 2

(x - 3)2
  =  


  =   5 - 2x

(x - 2)2(x - 3)2
  -   x - 1

(x - 2)2
  +   x - 2

(x - 3)2
  =  


  =   5 - 2x - (x - 1)(x -3)2 + (x - 2)(x - 2)2

(x - 2)2(x - 3)2
  =  


  =   5 - 2x - (x - 1)(x2- 6x + 9) + (x - 2)3

(x - 2)2(x - 3)2
  =  


  =   5 - 2x - (x3 - 6x2 + 9x - x2 + 6x - 9) + x3 - 6x2 + 12x - 8

(x - 2)2(x - 3)2
  =  


  =   5 - 2x - x3 + 6x2 - 9x + x2 - 6x + 9 + x3 - 6x2 + 12x - 8

(x - 2)2(x - 3)2
  =  


  =   x2 - 5x + 6

(x - 2)2(x - 3)2
  =  


  =   (x - 2)(x - 3)

(x - 2)2(x - 3)2
  =  


  =   1

(x - 2)(x - 3)