soluzione


Calcolare

[1 + 2( 1

x + y
- 1

y
) - y( 1

x + y
+ x

y2
)] · ( 1

xy - 2y
+ 1

xy + 2y
+ 2

x2 - 4
)   =  


  =   [1 + 2( 1

x + y
- 1

y
) - y( 1

x + y
+ x

y2
)] · ( 1

y(x - 2)
+ 1

y(x + 2)
+ 2

(x - 2)(x + 2)
)   =  


  =   [1 + 2· y - (x + y)

y(x + y)
- y· y2 +x(x + y)

y2(x + y)
] · x + 2 + x - 2 + 2y

y(x - 2)(x + 2)
  =  


  =   [1 + 2· y - x - y

y(x + y)
- y· y2 +x2 + xy

y2(x + y)
] · x + 2 + x - 2 + 2y

y(x - 2)(x + 2)
  =  


  =   [1 + 2· - x

y(x + y)
- y· y2 +x2 + xy

y2(x + y)
] · 2x + 2y

y(x - 2)(x + 2)
  =  


  =   [1 - 2x

y(x + y)
- y2 +x2 + xy

y(x + y)
] · 2x + 2y

y(x - 2)(x + 2)
  =  


  =   y(x + y) - 2x -(y2 + x2 + xy)

y(x + y)
· 2x + 2y

y(x - 2)(x + 2)
  =  


  =   xy + y2 - 2x -y2 - x2 - xy)

y(x + y)
· 2x + 2y

y(x - 2)(x + 2)
  =  


  =   - x2 - 2x

y(x + y)
· 2x + 2y

y(x - 2)(x + 2)
  =  


  =   - x(x - 2)

y(x + y)
· 2(x + y)

y(x - 2)(x + 2)
  =  


  =   2x
-  
y2(x + 2))