sviluppo
Calcolare
[1 + 2(
|
1
x + y |
-
|
1
y |
) - y(
|
1
x + y |
+
|
x
y2 |
)] · (
|
1
xy - 2y |
+
|
1
xy + 2y |
+
|
2
x2 - 4 |
)
|
=
|
progettiamo l'esercizio
scompongo i denominatori entro l'ultima parentesi tonda (raccoglimenti e differenza fra due quadrati)
=
|
[1 + 2(
|
1
x + y |
-
|
1
y |
) - y(
|
1
x + y |
+
|
x
y2 |
)] · (
|
1
y(x - 2) |
+
|
1
y(x + 2) |
+
|
2
(x - 2)(x + 2) |
)
|
=
|
per fare la somma entro le parentesi tonde faccio il minimo comune multiplo in ognuna di esse;
=
|
[1 + 2·
|
y - (x + y)
y(x + y) |
- y·
|
y2 +x(x + y)
y2(x + y) |
] ·
|
x + 2 + x - 2 + 2y
y(x - 2)(x + 2) |
=
|
eseguo le moltiplicazioni ai numeratori
=
|
[1 + 2·
|
y - x - y
y(x + y) |
- y·
|
y2 +x2 + xy
y2(x + y) |
] ·
|
x + 2 + x - 2 + 2y
y(x - 2)(x + 2) |
=
|
sommo i termini simili
=
|
[1 + 2·
|
- x
y(x + y) |
- y·
|
y2 +x2 + xy
y2(x + y) |
] ·
|
2x + 2y
y(x - 2)(x + 2) |
=
|
faccio i prodotti; nella prima frazione porto il segno meno davanti alla linea di frazione (e' piu' ordinato)
=
|
[1 -
|
2x
y(x + y) |
-
|
y2 +x2 + xy
y(x + y) |
] ·
|
2x + 2y
y(x - 2)(x + 2) |
=
|
soomma nella parentesi quadra: faccio il m.c.m.; lo divido per i denominatori e moltiplico il risultato per i numeratori; considero il primo termine 1 come la frazione 1/1
=
|
y(x + y) - 2x -(y2 + x2 + xy)
y(x + y) |
·
|
2x + 2y
y(x - 2)(x + 2) |
=
|
moltiplico al numeratore della prima frazione
=
|
xy + y2 - 2x -y2 - x2 - xy)
y(x + y) |
·
|
2x + 2y
y(x - 2)(x + 2) |
=
|
sommo i termini simili
=
|
- x2 - 2x
y(x + y) |
·
|
2x + 2y
y(x - 2)(x + 2) |
=
|
scompongo i numeratori
=
|
- x(x - 2)
y(x + y) |
·
|
2(x + y)
y(x - 2)(x + 2) |
=
|
semplifico
=
|
2x
-
y2(x + 2)) |
|