soluzione
Calcolare
[(
1 +
x
2
+1
x
:
x
2
-1
x
)
:
(
2 -
x
2
+2
x
:
x
2
-1
x
)
-
(
x
x+2
+
1
x-2
)]
·
x
2
-x-2
x
2
- 1
=
=
[(
1 +
x
2
+1
x
·
x
x
2
-1
)
:
(
2 -
x
2
+2
x
·
x
x
2
-1
)
-
(
x
x+2
+
1
x-2
)]
·
x
2
-x-2
x
2
- 1
=
=
[(
1 +
x
2
+1
x
2
-1
)
:
(
2 -
x
2
+2
x
2
-1
)
-
(
x
x+2
+
1
x-2
)]
·
x
2
-x-2
x
2
- 1
=
=
[(
1 +
x
2
+1
(x - 1)(x + 1)
)
:
(
2 -
x
2
+2
(x - 1)(x + 1)
)
-
(
x
x+2
+
1
x-2
)]
·
x
2
-x-2
x
2
- 1
=
=
[
x
2
- 1 + x
2
+ 1
(x - 1)(x + 1)
:
2(x
2
- 1) - (x
2
+ 2)
(x - 1)(x + 1)
-
x - 2 + x + 2
(x - 2)(x + 2)
]
·
x
2
-x-2
x
2
- 1
=
=
[
x
2
- 1 + x
2
+ 1
(x - 1)(x + 1)
:
2x
2
- 2 - x
2
- 2
(x - 1)(x + 1)
-
x - 2 + x + 2
(x - 2)(x + 2)
]
·
x
2
-x-2
x
2
- 1
=
=
[
2x
2
(x - 1)(x + 1)
:
x
2
- 4
(x - 1)(x + 1)
-
2x
(x - 2)(x + 2)
]
·
x
2
-x-2
x
2
- 1
=
=
[
2x
2
(x - 1)(x + 1)
·
(x - 1)(x + 1)
x
2
- 4
-
2x
(x - 2)(x + 2)
]
·
x
2
-x-2
x
2
- 1
=
=
[
2x
2
x
2
- 4
-
2x
(x - 2)(x + 2)
]
·
x
2
-x-2
x
2
- 1
=
=
[
2x
2
(x - 2)(x + 2)
-
2x
(x - 2)(x + 2)
]
·
x
2
-x-2
x
2
- 1
=
=
2x
2
- 2x
(x - 2)(x + 2)
·
x
2
-x-2
x
2
- 1
=
=
2x(x - 1)
(x - 2)(x + 2)
·
(x - 2)(x + 1)
(x - 1)(x + 1)
=
=
2x
x + 2