soluzione


Calcolare

[(1 + x2+1

x
: x2-1

x
) : (2 - x2+2

x
: x2-1

x
) -( x

x+2
+ 1

x-2
)] · x2-x-2

x2- 1
  =  


  =   [(1 + x2+1

x
· x

x2-1
) : (2 - x2+2

x
· x

x2-1
) -( x

x+2
+ 1

x-2
)] · x2-x-2

x2- 1
  =  


  =   [(1 + x2+1

x2-1
) : (2 - x2+2

x2-1
) -( x

x+2
+ 1

x-2
)] · x2-x-2

x2- 1
  =  


  =   [(1 + x2+1

(x - 1)(x + 1)
) : (2 - x2+2

(x - 1)(x + 1)
) -( x

x+2
+ 1

x-2
)] · x2-x-2

x2- 1
  =  


  =   [ x2 - 1 + x2 + 1

(x - 1)(x + 1)
: 2(x2 - 1) - (x2 + 2)

(x - 1)(x + 1)
- x - 2 + x + 2

(x - 2)(x + 2)
] · x2-x-2

x2- 1
  =  


  =   [ x2 - 1 + x2 + 1

(x - 1)(x + 1)
: 2x2 - 2 - x2 - 2

(x - 1)(x + 1)
- x - 2 + x + 2

(x - 2)(x + 2)
] · x2-x-2

x2- 1
  =  


  =   [ 2x2

(x - 1)(x + 1)
: x2 - 4

(x - 1)(x + 1)
- 2x

(x - 2)(x + 2)
] · x2-x-2

x2- 1
  =  


  =   [ 2x2

(x - 1)(x + 1)
· (x - 1)(x + 1)

x2 - 4
- 2x

(x - 2)(x + 2)
] · x2-x-2

x2- 1
  =  


  =   [ 2x2

x2 - 4
- 2x

(x - 2)(x + 2)
] · x2-x-2

x2- 1
  =  


  =   [ 2x2

(x - 2)(x + 2)
- 2x

(x - 2)(x + 2)
] · x2-x-2

x2- 1
  =  


  =   2x2 - 2x

(x - 2)(x + 2)
· x2-x-2

x2- 1
  =  


  =   2x(x - 1)

(x - 2)(x + 2)
· (x - 2)(x + 1)

(x - 1)(x + 1)
  =  


  =   2x

x + 2