soluzione
Calcolare
(
|
2
x |
+
|
1
a - x |
-
|
1
a + x |
) : (
|
a + x
a - x |
-
|
a - x
a + x |
) -
|
a
2x2 |
|
=
|
=
|
2(a2 - x2) + 2x(a + x) - x(a - x)
x(a - x)(a + x) |
:
|
(a + x)2 - (a - x)2
(a - x)(a + x) |
-
|
a
2x2 |
|
=
|
=
|
2a2 - 2x2 + 2ax + 2x2 - ax - x2
x(a - x)(a + x) |
:
|
a2 + 2ax + x2 - a2 + 2ax - x2
(a - x)(a + x) |
-
|
a
2x2 |
|
=
|
=
|
2a2 + ax - x2
x(a - x)(a + x) |
:
|
4ax
(a - x)(a + x) |
-
|
a
2x2 |
|
=
|
=
|
2a2 + ax - x2
x(a - x)(a + x) |
·
|
(a - x)(a + x)
4ax |
-
|
a
2x2 |
|
=
|
=
|
2a2 + ax - x2
4ax2 |
-
|
a
2x2 |
|
=
|
=
|
2a2 + ax - x2 - 2a2
4ax2 |
=
|
=
|
ax - x2
4ax2 |
=
|
=
|
x(a - x)
4ax2 |
=
|
=
|
a - x
4ax |
|