soluzione
Calcolare
x2
x2 + 2xy + y2 |
·
|
x2 + y2
x2y2 |
+
|
2x2
x3 + 3x2y + 3xy2 + y3 |
· (
|
1
x |
+
|
1
y |
) =
|
=
|
x2
x2 + 2xy + y2 |
·
|
x2 + y2
x2y2 |
+
|
2x2
x3 + 3x2y + 3xy2 + y3 |
·
|
y + x
xy |
=
|
=
|
x2
(x + y)2 |
·
|
x2 + y2
x2y2 |
+
|
2x2
(x + y)3 |
·
|
x + y
xy |
=
|
=
|
x2 + y2
y2(x + y)2 |
+
|
2x
y(x + y)2 |
=
|
=
|
x2 + y2 + 2xy
y2(x + y)2 |
=
|
=
|
(x + y)2
y2(x + y)2 |
=
|
=
|
1
y2 |
|