soluzione


Calcolare

x2

x2 + 2xy + y2
· x2 + y2

x2y2
+ 2x2

x3 + 3x2y + 3xy2 + y3
· ( 1

x
+ 1

y
) =


  =   x2

x2 + 2xy + y2
· x2 + y2

x2y2
+ 2x2

x3 + 3x2y + 3xy2 + y3
· y + x

xy
  =  


  =   x2

(x + y)2
· x2 + y2

x2y2
+ 2x2

(x + y)3
· x + y

xy
  =  


  =   x2 + y2

y2(x + y)2
+ 2x

y(x + y)2
  =  


  =   x2 + y2 + 2xy

y2(x + y)2
  =  


  =   (x + y)2

y2(x + y)2
  =  


  =   1

y2