soluzione


Calcolare

( x

y
  -   y

x
) : [( 1

x2
  +   1

y2
  -   4

x2 + y2
)·( x + y

x2 - xy
  +   x - y

x2 + xy
)]   =  


  =   ( x

y
  -   y

x
) : [( 1

x2
  +   1

y2
  -   4

x2 + y2
)·( x + y

x(x - y)
  +   x - y

x(x + y)
)]   =  


  =   x2 - y2

xy
: [ y2(x2 + y2) + x2(x2 + y2) - 4x2y2

x2y2(x2 + y2)
· (x + y)2 +(x - y)2

x(x - y)(x + y)
]   =  


  =   x2 - y2

xy
: [ x2y2 + y4 + x4 + x2y2 - 4x2y2

x4y2+ x2y4
· x2 + 2xy + y2 + x2 - 2xy + y2

x(x - y)(x + y)
]   =  


  =   x2 - y2

xy
: [ y4 + x4 - 2x2y2

x4y2+ x2y4
· 2x2 + 2y2

x(x - y)(x + y)
]   =  


  =   x2 - y2

xy
: [ (x - y)2(x + y)2

x2y2(x2 + y2)
· 2(x2 + y2)

x(x - y)(x + y)
]   =  


  =   x2 - y2

xy
: 2(x - y)(x + y)

x3y2
  =  


  =   x2 - y2

xy
· x3y2

2(x - y)(x + y)
  =  


  =   (x - y)(x + y)

xy
· x3y2

2(x - y)(x + y)
  =  


  =   x2y

2