soluzione
Calcolare
x2
x2 + x + 1 |
· [(
|
1
x3y + y |
-
|
1
x3y - y |
) : (
|
1
x3y + y |
+
|
1
x3y - y | ) + 1]
|
=
|
=
|
x2
x2 + x + 1 |
· [(
|
1
y(x3 + 1) |
-
|
1
y(x3 - 1) |
) : (
|
1
y(x3 + 1) |
+
|
1
y(x3 - 1) | ) + 1]
|
=
|
=
|
x2
x2 + x + 1 |
· [
|
x3 - 1 - (x3 + 1)
y(x3 + 1)(x3 - 1) |
:
|
x3 - 1 + (x3 + 1)
y(x3 + 1)(x3 - 1) |
+ 1]
|
=
|
=
|
x2
x2 + x + 1 |
· [
|
x3 - 1 - x3 - 1
y(x3 + 1)(x3 - 1) |
:
|
x3 - 1 + x3 + 1
y(x3 + 1)(x3 - 1) |
+ 1]
|
=
|
=
|
x2
x2 + x + 1 |
· [
|
- 2
y(x3 + 1)(x3 - 1) |
:
|
2x3
y(x3 + 1)(x3 - 1) |
+ 1]
|
=
|
=
|
x2
x2 + x + 1 |
· [
|
- 2
y(x3 + 1)(x3 - 1) |
·
|
y(x3 + 1)(x3 - 1)
2x3 |
+ 1]
|
=
|
=
|
x2
x2 + x + 1 |
· [
|
- 1
x3 |
+ 1]
|
=
|
=
|
x2
x2 + x + 1 |
·
|
- 1 + x3
x3 |
=
|
=
|
x2
x2 + x + 1 |
·
|
x3 - 1
x3 |
=
|
=
|
x2
x2 + x + 1 |
·
|
(x - 1)(x2 + x + 1)
x3 |
=
|
=
|
x - 1
x |
|