soluzione


Calcolare

x2

x2 + x + 1
· [( 1

x3y + y
- 1

x3y - y
) : ( 1

x3y + y
+ 1

x3y - y
) + 1] =


= x2

x2 + x + 1
· [( 1

y(x3 + 1)
- 1

y(x3 - 1)
) : ( 1

y(x3 + 1)
+ 1

y(x3 - 1)
) + 1] =


= x2

x2 + x + 1
· [ x3 - 1 - (x3 + 1)

y(x3 + 1)(x3 - 1)
: x3 - 1 + (x3 + 1)

y(x3 + 1)(x3 - 1)
+ 1] =


= x2

x2 + x + 1
· [ x3 - 1 - x3 - 1

y(x3 + 1)(x3 - 1)
: x3 - 1 + x3 + 1

y(x3 + 1)(x3 - 1)
+ 1] =


= x2

x2 + x + 1
· [ - 2

y(x3 + 1)(x3 - 1)
: 2x3

y(x3 + 1)(x3 - 1)
+ 1] =


= x2

x2 + x + 1
· [ - 2

y(x3 + 1)(x3 - 1)
· y(x3 + 1)(x3 - 1)

2x3
+ 1] =


= x2

x2 + x + 1
· [ - 1

x3
+ 1] =


= x2

x2 + x + 1
· - 1 + x3

x3
=


= x2

x2 + x + 1
· x3 - 1

x3
=


= x2

x2 + x + 1
· (x - 1)(x2 + x + 1)

x3
=


= x - 1

x