sviluppo Applicare 1° principio di equivalenza per semplificare la seguente equazione 2x + 3x + 5 = - x - 7 Devo avere tutti i termini con la x prima dell'uguale e tutti termini senza la x dopo l'uguale Quindi devo eliminare il + 5 che si trova prima dell'uguale ed anche il - x che si trova dopo l'uguale 2x + 3x + 5 = - x - 7 per eliminare ogni termine devo affiancargli lo stesso termine col segno cambiato; ma, essendo l'uguaglianza una bilancia, quello che metto da una parte dell'uguale devo metterlo anche dall'altra parte 2x + 3x + 5 - 5 + x = - x + x - 7 - 5 sommo e quindi siccome - x + x = 0 e + 5 - 5 = 0 ottengo Siccome devo applicare il 1° principio mi limito a sommare i termini di segno opposto 2x + 3x + x = - 7 - 5 Per abbreviare si utilizza la regolina: posso trasportare dall'altra parte dell'uguale ogni termine cambiandolo di segno cioe' scriveremo direttamente 2x + 3x + 5 = - x - 7 porto il + 5 dopo l'uguale ed il - x prima dell'uguale cambiandoli di segno 2x + 3x + x = - 7 - 5 |