si tratta di una costante 4 per il prodotto fra le due funzioni sen x3 e sen3x ed entrambe si possono considerare funzione di funzione infatti nella prima seno e' funzione di x3 nella seconda abbiamo la potenza 3 che e' funzione di senx 4 e' una costante la derivata di sen x3 e' cos x3 · 3x2 la derivata di sen3x e' 3sen2x·cosx avro' applicando la regola della derivata di un prodotto: y' = 4·[ cos x3· 3x2·sen3x + sen x3 ·3sen2x ·cosx] Eseguendo i calcoli y' = 12 x2 sen3x·cos x3 + 12 sen2x·sen x3· cos x Nota: in questo esercizio si giocava sulla confusione che puo' nascere fra le due scritture: sen x3 e sen3x la prima significa: sen(x·x·x) la seconda significa: senx·senx·senx ed equivale a (sen x)3 |